Step of Proof: adjacent-append
11,40
postcript
pdf
Inference at
*
1
2
1
2
I
of proof for Lemma
adjacent-append
:
1.
T
: Type
2.
x
:
T
3.
y
:
T
4.
L1
:
T
List
5.
L2
:
T
List
6.
i
: {0..(||
L1
@
L2
|| - 1)
}
7.
x
= (
L1
@
L2
)[
i
]
8.
y
= (
L1
@
L2
)[(
i
+1)]
9.
(
i
< ||
L1
||)
y
=
L2
[((
i
- ||
L1
||)+1)]
latex
by ((RWO "length-append" (-4))
CollapseTHENA (Auto
))
latex
C
1
:
C1:
6.
i
: {0..((||
L1
||+||
L2
||) - 1)
}
C1:
7.
x
= (
L1
@
L2
)[
i
]
C1:
8.
y
= (
L1
@
L2
)[(
i
+1)]
C1:
9.
(
i
< ||
L1
||)
C1:
y
=
L2
[((
i
- ||
L1
||)+1)]
C
.
Definitions
n
-
m
,
||
as
||
,
s
~
t
,
x
:
A
.
B
(
x
)
,
Void
,
n
+
m
,
#$n
,
l
[
i
]
,
as
@
bs
,
A
,
s
=
t
,
{
i
..
j
}
,
Type
,
S
T
,
x
:
A
.
B
(
x
)
,
x
:
A
B
(
x
)
,
t
T
,
type
List
,
Top
Lemmas
length-append
,
member
wf
,
top
wf
origin